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act

icity produced and used in the residential sector is responsible for approximately 30% of the greenhouse ga
ions (GHGE). Insulating houses and integrating renewable energy and storage resources are key for reducing
missions. However, it is not only a matter of installing renewable energy technologies but also of optimizing
arging/discharging of the storage units. A number of optimization models have been proposed lately to ad
this problem. However, they are often limited in several respects: (i) they often focus only on electricity bil
tion, placing GHGE reduction on the backburner; (ii) they rarely propose hybrid-energy storage optimization
gies considering thermal and storage heater units; (iii) they are often designed using Linear Programming
or metaheuristic techniques that are computational intensive, hampering their deployment on edge devices
v) they rarely evaluate how the model impacts on the battery lifespan. Given this state-of-affairs, the presen
compares two approaches, the first one proposing an innovative sliding grid carbon intensity threshold algo

developed as part of a European project named RED WoLF, the second one proposing an algorithm designed
on LP. The comparison analysis is carried out based on two distinct real-life scenarios in France and UK

ts show that both algorithms contribute to reduce GHGE compared to a solution without optimization logic
een 10 to 25%), with a slight advantage for the LP algorithm. However, RED WoLF makes it possible to
e significantly the computational time (≈ 25 min for LP against ≈ 1 ms for RED WoLF) and to extend the
y lifespan (4 years for LP against 12 years for RED WoLF).

ords: Greenhouse Gas Emission, Energy efficiency, Photovoltaics, Battery, Edge computing, Linear
amming

troduction

bally, the residential sector accounts for a sub-
al part of the consumed energy and greenhouse
mission (GHGE) (Baek and Kim, 2020). Re-
g GHGE can be achieved by better insulating
s and buildings, switching from polluting (al-
heap) coal to natural gas or renewable energy
es (Lazarus and van Asselt, 2018), and devel-

intelligent applications to efficiently integrate

rresponding author
ail addresses: paul.ortiz@univ-lorraine.fr (Paul
s.kubler@univ-lorraine.fr (Sylvain Kubler),
rondeau@univ-lorraine.fr (Éric Rondeau),
e@rit.edu (Katie McConky),
khobodskiy@leedsbeckett.ac.uk (Alexander
drovich Shukhobodskiy ),
antuono@leedsbeckett.ac.uk (Giuseppe Colantuono),
philippe.georges@univ-lorraine.fr (Jean-Philippe
s)

such renewables resources with flexible storage sys10

tems (Ahmed et al., 2021). Indeed, it is not only11

a matter of installing renewable energy technologie12

(e.g., PV array, wind or biomass), but also of opti13

mizing the charging/discharging of the storage unit14

(e.g., battery, thermal storage, electric vehicles, etc.15

(Al-Shahri et al., 2021).16

A number of charging and discharging optimization17

models of storage units have been proposed in the lit18

erature (Hannan et al., 2021). Although these model19

may differ in terms of required infrastructure (e.g., dif20

ferent renewable energy sources, loads), targeted fit21

ness goals, they are often limited in three-respects22

First, they are often designed based on Linear Pro23

gramming (LP), which can quickly become complex24

and time consuming with the increase in the numbe25

of constraints and variables. Significant computation26

requirements of LP can have negative environmen27

tal impacts due to computational energy consumption28

t submitted to Journal of Cleaner Production June 3, 2022
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Figure 1: Nanogrid main technological constituents

stic methods to solve LP’s can combat the com-
on issue, but the trade off is in solution quality
euristics providing sub-optimal solutions. Sec-

they often focus on cost – electricity bill – re-
n, placing environmental goals such as GHGE

tion, maximization of the system’s lifespan, on
ackburner. Third, they often consider a single
e unit (mostly Battery Energy Storage System -
) and rarely propose hybrid-energy storage opti-
ion strategies (e.g., combining BESS with ther-
torage, storage heaters, etc.). Such limitations
been stressed and discussed in the recent survey
shed by Hannan et al. (2021). To overcome these
tions, an innovative sliding grid carbon inten-
reshold approach, developed as part of a Euro-

project named RED WoLF1 (Rethink Electricity
bution Without Load Following), has been pre-

initially in (Shukhobodskiy and Colantuono,
, modified in (Ortiz et al., 2021) and extended
(Wiesheu et al., 2021), which can act on any
ing. In the present article, the goal is to
the extent to which RED WoLF outperforms
heuristic-based algorithms in terms of GHGE

tion efficiency, battery lifespan maximization,
omputational complexity. The latter (compu-
al complexity) is of particular importance with
dvent of Edge Computing in the energy sec-

unir et al., 2019), which pushes the frontier
mputation applications away from centralized

(Cloud) to the communication network’s ex-
s (Edge).
ection 2, a review of existing energy storage op-
tion strategies is carried out, based on which
ch trends and gaps are discussed. Section 3

nts the RED WoLF system and underlying logic,
so proposes an extension of the algorithm intro-
by Olivieri and McConky (2020) with the aim

egrating PV energy resources into their model.

ps://www.nweurope.eu/projects/project-search/red-wolf-
-electricity-distribution-without-load-following/

Both algorithms are evaluated and compared in sec67

tion 4 considering two real-life scenarios (houses68

from France and UK, the conclusion follows in sec69

tion 5. Overall, the present paper differs from our pre70

vious papers in several respects:71

• first, an in-depth analysis and comparison be72

tween two approaches (rule-based vs. Linea73

programming) aiming at reducing carbon emis74

sion in residential houses are carried out. To the75

best of our knowledge, no study has ever con76

ducted such an analysis in the field of low green77

house gas emission houses.78

• second, in order to allow for fair comparison be79

tween the two approaches, an extension of the80

initial Olivieri’s model is proposed to integrate81

PV systems;82

• third, even if the prime objective is to reduce83

CO2, an in-depth analysis and comparison analy84

sis of how the two models behave in terms of the85

battery lifespan and computational time needed86

to solve the problem are carried out.87

2. Scope, Definition and Positioning88

Section 2.1 gives the context of our contribution89

focusing on the energy field. Section 2.2 discusse90

how our research progresses the current state-of-the91

art.92

2.1. Scope and Definition93

The energy life cycle consists of several stages94

spanning from its generation and transmission to its95

distribution and consumption (Saleem et al., 2019)96

The present research falls within the scope of energy97

management at the consumption stage, and more ex98

actly in residential nanogrids (Burmester et al., 2017)99

Energy management in nanogrids usually consists o100

four equipment categories, as depicted in Figure 1101

namely:102

2
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• Electric Loads: referring to house equipment103

that consume energy such as appliances, Electric104
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ehicle (EV), HVAC equipment, etc.;

lexible & Shiftable Loads: referring to equip-
ent able to store energy for later use (incl., bat-

eries, storage heaters, water cylinders, or sta-
ionary electrical vehicles) or to shift consump-
ion from the peak of the utility provider’s de-

and curve, when energy is most precious, to an-
ther most appropriate time (e.g., by delaying the
tart time of the washing machine or the charging
tart time of the EV);

enewable energy sources: referring to energy
ources that can be regenerated and sustainably
tilized from nature including non-fossil energy
uch as wind energy, solar energy, biomass en-
rgy, geothermal energy or kinetic ocean energy;

on-renewable energy sources: referring to en-
rgy sources that have finite supplies and can-
ot be restored or regenerated in short periods of
ime (incl., coal, natural gas, oil, nuclear energy).

pending on the type of nanogrid architecture
presence or not of renewable energy sources,
le loads, etc.) and the targeted objectives (e.g.,
ing energy bills and/or GHGE and/or extending
e lifetimes, etc.), the Energy Management Sys-

MS) integrates different logics (Georgiou et al.,
, as reviewed and discussed in the next section.

urrent state-of-affairs
is section presents an overview of the current
of-affairs, along with the trends and gaps in the
ure. The methodology applied for reviewing the
ure is detailed in Figure 2. Sources such as doc-
dissertations, master’s theses, textbooks and un-
shed papers were ignored. A first filter, denoted
) in Figure 2, has been applied, consisting in se-
g articles based on the abstract content. This led
keep 202 articles. A second filter, denoted by
as then been applied to keep papers dealing with
y storage optimization (147 articles were identi-
A final third filter denoted by (3), was applied to

only papers proposing approaches at the residen-
vel only. This led us to review 43 articles, which
been classified in Table 1 based on the following
ia/categories:

ifecycle phase: highlights whether the proposed
pproach deals with an optimization problem at
he Design (D) phase (e.g., for battery sizing)
r at the Operational (O) one (i.e., for deciding
hen to consume/store/release energy);

ptimization goal(s): highlights what objec-
ive(s) is/are targeted by the proposed approach,

(1)

Yes (202 articles)

(2)

Yes (147 articles)

(3)

Yes (43 articles)

Included in the review
analysis (see Table 1)

No

No

No

Rejected from the
review analysis

Figure 2: Literature review process

which are categorized as follows: (i) bill reduc155

tion; (ii) GHGE reduction; (iii) peak shaving156

(iv) sustainability; (v) grid independency; (vi157

fuel reduction;158

• Energy storage: highlights what storage system159

are considered/used, which are categorized as160

follows: (i) BESS (battery energy storage sys161

tem) to (ii) hydro, (iii) Electric Vehicle (EV), (iv162

thermal or heating, and (v) fuel cell storage. Thi163

category also emphasizes whether the approach164

takes advantage of (vi) shiftable loads;165

• Energy production: highlights what production166

systems are considered/used, which are catego167

rized as follows: (i) fossil fuel, (ii) electrical grid168

(iii) PV array; (iv) wind turbine;169

• Method: highlights the type of methods used fo170

optimization: (i) Heuristic (H); (ii) Metaheuris171

tic (MH); (iii) Mathematical Programming (MP)172

(iv) Rule-Based (RB); (v) Multi-Criteria Deci173

sion Attribute (MCDA).174

A first interesting finding from this review is tha175

there is a similar proportion of articles dealing with176

optimization problems at the design (D) phase and a177

the operational (O) one. In the former (D), article178

mainly focus on optimizing the hardware constituent179

(battery size, installation cost, self-consumption ca180

pabilities, etc.) as well as the equipment configu181

ration to meet the various possible objectives (e.g.182

total cost of the installation, environmental impact183

self-consumption). The HOMER (Hybrid Optimiza184

tion Model for Electric Renewable) software, devel185

oped by the National Renewable Energy Laboratory186

(NREL), appears in several of these articles such as187

(Fodhil et al., 2019), as it allows for simulating and188

3
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Table 1: Classification of the scientific articles reviewed throughout Section

Optimization Goals Storage/Shiftable Production
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e

M
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d

n et al. (2020a) D ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ MH
n et al. (2020b) D ■ ■ ■ ■ ■ ■ ■ ■ ■ MH
al. (2020) D ■ ■ ■ ■ ■ ■ ■ MCDA
M. et al. (2019) D ■ ■ ■ MH
et al. (2019) D ■ ■ ■ ■ ■ ■ ■ ■ MH
et al. (2020) D ■ ■ ■ MH

(2019) D ■ ■ ■ ■ ■ ■ ■ H
et al. (2019) D ■ ■ ■ ■ ■ ■ MH
a et al. (2021) D ■ ■ ■ ■ ■ ■ ■ ■ MP
idan and Muhsin (2020) D ■ ■ ■ MH
m et al. (2019) D ■ ■ ■ ■ ■ MH
et al. (2019) D ■ ■ ■ ■ ■ ■ ■ RB
-Vera et al. (2020) D ■ ■ ■ ■ ■ ■ MH
t al. (2019) D ■ ■ ■ ■ ■ RB, H
ć (2018) D ■ ■ ■ MP
ughnessy et al. (2018) D ■ ■ ■ ■ H
n et al. (2014) D ■ ■ ■ MP
and Debnath (2019) D ■ ■ ■ MH
o et al. (2020) D RB
et al. (2020) D ■ ■ ■ MH
et al. (2018) O ■ ■ ■ ■ ■ MP

ud et al. (2018) O ■ ■ ■ ■ ■ ■ RB
al. (2020) O ■ ■ ■ ■ ■ ■ RB
urkar and Smith (2019) O ■ ■ ■ ■ ■ ■ ■ ■ MH
i and McConky (2020) O ■ ■ ■ ■ MP

et al. (2020) O ■ ■ ■ ■ ■ ■ H
iuk et al. (2018) O ■ ■ ■ ■ ■ ■ ■ RB
w et al. (2019a) O ■ ■ ■ ■ ■ ■ MP
w et al. (2019b) O ■ ■ ■ ■ ■ ■ ■ ■ MP
i et al. (2016) O ■ ■ ■ ■ ■ ■ ■ MP
tt et al. (2013) O ■ ■ ■ ■ ■ ■ MP
et al. (2018) O ■ ■ ■ ■ MP
iyawage and Shen (2020) O ■ ■ ■ ■ ■ ■ MP
et al. (2018) O ■ ■ ■ ■ ■ ■ RB

ati et al. (2019) O ■ ■ ■ ■ ■ ■ MH
t al. (2019) O ■ ■ ■ ■ ■ RB, H
-Triviño et al. (2016) O ■ ■ ■ ■ ■ ■ MH
and et al. (2016) O ■ ■ ■ ■ ■ MH
and et al. (2017) O ■ ■ ■ ■ ■ ■ MP
lez-Briones et al. (2018) O ■ ■ ■ RB
al. (2020) O ■ ■ ■ ■ ■ ■ ■ MH

obodskiy and Colantuono
; Ortiz et al. (2021)

O ■ ■ ■ ■ ■ ■ ■ ■ RB

-Hidalgo et al. (2021) O ■ ■ ■ ■ ■ ■ ■ RB
iou et al. (2020a) O ■ ■ ■ ■ ■ ■ MP
iou et al. (2020b) O ■ ■ ■ ■ ■ ■ MP,MH
et al. (2012) O ■ ■ ■ ■ ■ ■ ■ MCDA

39 27 2 18 20 5 3 38 2 2 5 6 18 28 31 14

zing different types of renewable energy infras-
res. Although our article focuses on the oper-
l phase (optimizing energy storage over time),

eview evidences that optimization also plays a
le at the design phase.

garding the articles at the operational (O) phase,
of the literature focuses on optimizing charg-

ischarging cycles of the energy storage systems
ft the consumption from peak to off-peak hours.
idenced in Table 1, all the reviewed articles

adopt a multi-objective optimization model, aiming199

at first – in 85% of the reviewed articles – reduc200

ing the electricity bill, second – 54% – at reducing201

GHGE, third – 46% – at improving sustainability202

aspects (e.g., extending the battery lifespan) and/o203

grid interdependency, while peak shaving and fuel re204

duction have been considered infrequently in the re205

viewed papers. The reason for this is twofold: (i206

fuel reduction and peak shaving are often formulated207

as overarching objectives when there is no connexion208
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electrical grid; and (ii) there are partly tackled
citly when addressing the GHGE reduction and
duction problems (fuel reduction being mainly
to GHGE and peak shaving to financial costs)..
an energy production and storage viewpoint, a
cant proportion of the reviewed articles – 65%
sider a combination of electrical grid, PV and
technologies, which can be explained by the

at it is often the most economical configuration,
lyzed in (Murty and Kumar, 2020). Another in-

ing point is that a couple of approaches propose
mbine different types of storage such as BESS
V (Mahmud et al., 2018), BESS and hydrogen
e (Bhayo et al., 2020), or still BESS and thermal
e (e.g., water cylinder) (Terlouw et al., 2019b),
provides additional flexibility for energy man-

ent. Looking at the optimization techniques used
roblem-solving, most of the approaches – in
of the reviewed articles – rely on optimization
rs or heuristic algorithms, which require a cer-
mount of time to find optimal solutions, often
ng exponentially along with the increase of con-
ts and variables. This constitutes a serious im-
ent for the development of Edge Computing so-
s in the energy sector, as thoroughly discussed
ng et al. (2021).

en the lack of approaches combining differ-
pes of storage systems, and the fact that most
em are computationally intensive, a new hy-
torage system for GHGE reduction in residential
s/dwellings is being developed by the Interreg
RED WoLF consortium, as originally presented
ukhobodskiy and Colantuono, 2020). Section 3
s the infrastructure and logic underlying RED
, but also proposes an extension of the LP-
algorithm introduced by Olivieri and McConky
) with the aim to integrate PV into the model.

3. GHGE reduction systems246

The hybrid-energy storage strategy proposed in247

RED WoLF is detailed in section 3.1. The extension248

of Olivieri’s model is then presented in section 3.2.249

3.1. RED WoLF optimization system250

Figure 3 gives an overview of the hardware251

electrical and communication architecture un252

derlying the RED WoLF system introduced in253

(Shukhobodskiy and Colantuono, 2020) and furthe254

in (Ortiz et al., 2021), highlighting the power flow255

monitoring flow (i.e., monitored devices) and contro256

flow ( controllable devices from the algorithm)257

As a first category of equipment, home appliance258

comprise all devices that consume electrical powe259

and do not have any storage capability (e.g., TV260

oven, light, etc.). It should be highlighted that, as261

of today, RED WoLF does not consider shiftable262

loads as an additional flexibility resource. From an263

energy supply perspective, RED WoLF consider264

two electrical power sources to supply the home265

appliances, namely (i) the national electrical grid266

which is a non-renewable energy source as it ha267

a carbon intensity, and (ii) a PV array, which is268

a renewable (non-polluting) source. In terms o269

flexible energy-storage devices, RED WoLF pro270

poses a hybrid-energy storage system, combining271

electrochemical and thermal storage systems, as272

illustrated in Figure 3 (BESS, water cylinder and273

storage heaters). Finally, from a control viewpoint274

the RED WoLF algorithm is executed in a PLC (see275

Figure 3), generating commands at different time276

to either store or draw a certain amount of powe277

in/from the above described hybrid-energy storage278

system.279

Based on the hardware constituents, several data are280

collected for use by the RED WoLF algorithm. These281

data can be categorized in three classes:282
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Table 2: Variables used in the RED WoLF optimization system
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Class Variable Units Description
In

pu
t&

In
te

rn
al

V
ar

ia
bl

es
Real-time Acur kW Appliances present consumption
Real-time CO2cur gCO2/kWh Grid present CO2 load
Real-time PVcur kW PV present production
Real-time Blev kWh Battery state of charge
Real-time Clev kWh Cylinder state of charge
Real-time Hlev kWh Storage heater state of charge
Predicted Apre kW Appliances predicted consumption
Predicted PVpre kW PV predicted production
Predicted CO2pre gCO2/kWh Grid predicted CO2 load
Predicted DED kWh Appliances predicted consumption until the end of the day
Predicted GPU kW Grid predicted available mean drawable power
Static BC kWh Battery capacity
Static BImax kW Battery maximum admissible power
Static CImax kW Cylinder maximum admissible power
Static Cset kWh Cylinder setpoint
Static DImax kW Grid power drawing limit (set by utility provider)
Static HImax kW Storage heater maximum admissible power
Static Hset kWh Storage heater setpoint
N/A Cdem kW Cylinder present power demand
N/A Bdem kW Battery present power demand
N/A DImaxAPV kW Grid and PV power available for HSS
N/A Hdem kW Storage heater present power demand
N/A Pbal kW Remaining power after supplying appliances and HSS
N/A CO2thr gCO2/kWh Control CO2 threshold
N/A TI min Smallest time to supply HSS considering appliances

O
ut

pu
tV

ar
. Real-time Bcon kW Power to be drawn from the battery

Real-time Bin j kW Power to be stored in the battery
Real-time Ccur kW Power to be stored in the water cylinder
Real-time Gcon kW Power to be drawn from the grid
Real-time Gin j kW Power to be injected to the grid
Real-time Hcur kW Power to be stored in the storage heater

tatic parameter values: referring to fixed param-
ters such as manufacturers’ data (e.g., maximum
attery capacity);
eal-time data values: referring to live data mon-

tored at the hardware layer (e.g., data coming
rom smart meters, sensors in the battery, etc.);
redicted data values: referring to predicted data
uch as predicted grid carbon intensities, pre-
icted PV generation and house consumption.

le 2 (column denoted by class) reports what sys-
ariables belong to what class. It should be noted
ome system parameters are both predicted (us-
L) and monitored in real-time (e.g., via sensors),
s house appliance demand (respectively denoted
re and Acur), the output power produced by PV
e, PVcur), or the grid carbon intensities (CO2cur,
re). Based on the input data, the RED WoLF al-
m follows a two-step approach. First, a CO2

old applied on the (predicted) grid intensity sig-
computed, which identifies when it is optimal to

draw energy from the grid to meet – at minimum – the303

house demand. Based on this threshold, a rule-based304

strategy is applied to decide the charging/discharging305

actions to be executed. These two steps are furthe306

described in the following paragraphs.307

To compute the CO2 threshold, the average avail
able electrical power to supply the thermal storage
system (GPU), the energy required to reach the set
point until the end of the day (DED), the heater and
cylinder power demands (Hdem and Cdem) must be
computed, as respectively given from Eq. (1) to (4).

GPU = DImax −
∫ T

t

Apre(t)
(T − t)

dt − BImax (1

DED =

∫ T

t

Apre(t)
60

dt +
∑

i=H,C

(idem − ilev) (2

Hdem = HImax × Heavi(Hset − Hlev) (3
Cdem = CImax × Heavi(Cset − Clev) (4

Several system constraints and state variables are308
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Charging Time
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Section 3.2.2
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ues

efined
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COa
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3h
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COb
2

5h2h

Figure 4: RED WoLF’s CO2 threshold computation example

in this respect, such as the maximum charging
r of the battery, cylinder and heater (respectively
ed by BImax, HImax, CImax), the maximum power
ble from the grid (DImax), or still the current
of charge of the heater and cylinder (Hlev and
Note that the Heaviside step function (Heavi)
ned as True (1) if the input is greater than 0,
e (0) otherwise.
e minimum time length (TI) to charge equipment
ther computed from DE D, GPU , Hdem and Cdem,
en in Eq. (5).

I = max
(
Cdem − Clev

CImax
,

Hdem − Hlev

HImax
,

DED

GPU

)
(5)

e CO2 threshold (CO2thr), which identifies the
ntervals for drawing electricity from the grid, is
computed using Eq. (7), CO2preS ort referring to
O2 prediction vector sorted in ascending order,
en in Eq. (6).

CO2preS ort = sort(CO2pre) (6)

e ceil function used in Eq. (7) allows for getting
teger value, which represents the drawing time
inutes) that is used as index in the sorted CO2

r to determine the CO2 threshold.

CO2thr = CO2preS ort (dTIe) (7)

ure 4 illustrates the output when applying the
equations. Assuming a TI equals to 7h, the

old that meets this charging duration should
entified. The first threshold example (denoted
Oa

2 in Figure 4) does not meet this require-
while the second threshold (COb

2) does, re-
g in two “low CO2 periods”: [8am; 10am] and
; 6pm]. Based on the computed threshold, a spe-
ule-based logic is applied, which is detailed in
rm of a flowchart in Figure 5 using the UML ac-
diagram formalism. This flowchart shows that
arts are run in parallel. On the first part (see
denoted by “CO2 threshold computation” in

e 5), the steps refer to the reading of sensor data
d to compute the CO2 threshold (CO2thr). Such

is either locally accessed (e.g., state of charge
battery) or remotely (e.g., appliance consump-

orecasts or grid carbon intensity forecasts that

Figure 5: Overall RED WoLF logic
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Table 3: Variables used in the Olivieri’s optimization system (Olivieri and McConky, 2020)

Class Var. Unit Description
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Predicted di kW Power required to supply appliances over the time interval i
Predicted Mi gCO2/kWh Grid CO2 load over the time interval i
Predicted pvi kW Power provided by PV over the time interval i

Real-time Cap kWh BESS max capacity
N/A ppvi kW Power from PV used by appliances over the time interval i
N/A bpvi kW Power from PV injected to BESS over the time interval i
N/A gpvi kW Power from PV sent back to grid over the time interval i
N/A CO2i gCO2 CO2 emitted over the time interval i
N/A SOCi kWh BESS state of charge read over the time interval i
N/A I hrs Length of each time interval
N/A T N/A Set of discrete time intervals
N/A inef % Inefficiency factor (0 to 1)
N/A pci kW Power charged in BESS over interval i
N/A pdi kW Power discharged from BESS over i

mputed at the Cloud level). On the second part
rame denoted by “Actions computation” in Fig-
, the steps refer to the decisions about the actions
executed in terms of energy storage and release
ding on the threshold value (CO2thr), namely:

f CO2cur < CO2thr, appliances and the hybrid-
nergy storage system are powered by the grid
nd PV array;
f CO2cur > CO2thr but PV is sufficient, appli-
nces are powered through PV and extra-power
if any) is used to load the hybrid-energy storage
ystem;
f CO2cur > CO2thr and PV is insufficient, appli-
nces are powered through PV; if not sufficient,
hrough battery; if not yet sufficient, then through
he grid.

hould be noted that the RED WoLF algorithm
pired by the ARIMA (Autoregressive Integrated
ng Average) model (Siami-Namini et al., 2018),

in our case (considering the input data of our
em) adds non-linearity and other levels of com-
y to the system. This is due to RED WoLF al-
m takes as the input the prediction values and

nt state of storage reservoirs, however the execu-
s done on current physical state of the system.

livieri’s optimization system

vieri’s optimization model considers the in-
ucture detailed in Figure 6, the algorithm be-
un on a smart meter that controls the battery
ieri and McConky, 2020). The model uses a LP
r to reduce electricity bill, carbon emission, or
imultaneously. For a fair comparison with RED
, only the model proposed for carbon emission
tion is considered in this study. This model is
ed through Eq. (8) to (17), which minimizes the

Figure 6: Olivieri’s hardware architecture

CO2 emissions produced to meet the household’s en
ergy demand during a time interval denoted by i.

min Emissions =
∑

i∈T

CO2i (8

subject to
CO2i = (di + pci − pdi − ppvi) · I · Mi, ∀i ∈ T (9
pci ≥ 0, ∀i ∈ T (10
pdi ≥ 0, ∀i ∈ T (11
(pci + bpvi) ≤ Cap/2.7, ∀i ∈ T (12

S OCi =

i∑

t=0

(pct + bpvi) · ine f · I

−
i∑

t=0

pdt · I, ∀i ∈ T (13

S OCi ≥ 0, ∀i ∈ T (14
S OCi ≤ Cap, ∀i ∈ T (15
gpvi + ppvi + bpvi = pvi,∀i ∈ T (16
gpvi, ppvi, bpvi ≥ 0,∀i ∈ T (17

CO2 emissions are computed using Eq. 9, while361
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