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Greenhouse Gas Emission Reduction in Residential Buildings: A Lightweight
Model to be Deployed on Edge Devices

Paul Ortiza",:Sylvain Kubler®®, Eric Rondeau?, Katie McConky®, Alexander Alexandrovich Shukhobodskiyd,
Giuseppe Colantuono?, Jean-Philippe Georges®

“Université de Lorraine, CNRS, CRAN, F-54000, France
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¢Department of Industrial and Systems Engineering, Rochester Institute of Technology, 81 Lomb Memorial Drive, Rochester; NY 14623,
United States
4School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds, LS1 3HE, UK

Abstract

Electricity produced and used in the residential sector is responsible for approximately 30% of the greenhouse gas
emissions (GHGE). Insulating houses and integrating renewable energy and storage resources are key for reducing
such emissions. However, it is not only a matter of installing renewable energy technologies but also of optimizing
the charging/discharging of the storage units. A number of optimization models have been proposed lately to ad-
dress this problem. However, they are often limited in several respects: (i) they often focus only on electricity bill
reduction, placing GHGE reduction on the backburner; (ii) they rarely propose hybrid-energy storage optimization
strategies considering thermal and storage heater units; (iii) they are often designed using Linear Programming
(LP) or metaheuristic techniques that are computational intensive, hampering their deployment on edge devices;
and (iv) they rarely evaluate how the model impacts on the battery lifespan. Given this state-of-a [aits, the present
article compares two approaches, the first one proposing an innovative sliding grid carbon intensity threshold algo-
rithm developed as part of a European project named RED WoLF, the second one proposing an algorithm designed
based on LP. The comparison analysis is carried out based on two distinct real-life scenarios in France and UK.
Results show that both algorithms contribute to reduce GHGE compared to a solution without optimization logic
(between 10 to 25%), with a slight advantage for the LP algorithm. However, RED WoLF makes it possible to
reduce significantly the computational time (= 25 min for LP against = 1 ms for RED WoLF) and to extend the
battery lifespan (4 years for LP against 12 years for RED WoLF).

Keywords: Greenhouse Gas Emission, Energy e Lciehcy, Photovoltaics, Battery, Edge computing, Linear
Programming

1. Introduction 10 such renewables resources with flexible storage sys-
u tems (Ahmed et al., 2021). Indeed, it is not only

Globally, the residential sector accounts for a sub- ,, 3 matter of installing renewable energy technologies
stantial part of the consumed energy and greenhouse , (e.g., PV array, wind or biomass), but also of opti-
gas emission (GHGE) (Baek and Kim, 2020). Re- ., mjzing the charging/discharging of the storage units

ducing GHGE can be achieved by better insulating (e.g., battery, thermal storage, electric vehicles, etc.)
houses and buildings, switching from polluting (al- ., (Al-Shahri et al., 2021).

beit cheap) coal to natural gas or renewable energy

sources (Lazarus and van Asselt, 2018), and devel- 17 A number of charging and discharging optimization
Oping intel]igent app]ications to e E]_'Eht]y integrate 18 models of storage units have been proposed in the lit-
19 erature (Hannan et al., 2021). Although these models
20 may di Lerlin terms of required infrastructure (e.g., dif-
f€orresponding author a1 ferent renewable energy sources, loads), targeted fit-
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Figure 1: Nanogrid main technological constituents

Heuristic methods to solve LP’s can combat the com-
putation issue, but the trade o [[id in solution quality
with heuristics providing sub-optimal solutions. Sec-
ond, they often focus on cost — electricity bill — re-
duction, placing environmental goals such as GHGE
reduction, maximization of the system’s lifespan, on
the backburner. Third, they often consider a single
storage unit (mostly Battery Energy Storage System -
BESS) and rarely propose hybrid-energy storage opti-
mization strategies (e.g., combining BESS with ther-
mal storage, storage heaters, efc.). Such limitations
have been stressed and discussed in the recent survey
published by Hannan et al. (2021). To overcome these
limitations, an innovative sliding grid carbon inten-
sity threshold approach, developed as part of a Euro-
pean project named RED WoLF! (Rethink Electricity
Distribution Without Load Following), has been pre-
sented initially in (Shukhobodskiy and Colantuono,
2020), modified in (Ortiz et al., 2021) and extended
with (Wiesheu et al., 2021), which can act on any
dwelling. In the present article, the goal is to
study the extent to which RED WoLF outperforms
LP or heuristic-based algorithms in terms of GHGE
reduction e Lciehcy, battery lifespan maximization,
and computational complexity. The latter (compu-
tational complexity) is of particular importance with
the advent of Edge Computing in the energy sec-
tor (Munir et al., 2019), which pushes the frontier
of computation applications away from centralized
nodes (Cloud) to the communication network’s ex-
tremes (Edge).

In section 2, a review of existing energy storage op-
timization strategies is carried out, based on which
research trends and gaps are discussed. Section 3
presents the RED WoLF system and underlying logic,
but also proposes an extension of the algorithm intro-
duced by Olivieri and McConky (2020) with the aim
of integrating PV energy resources into their model.

Uhttps://www.nweurope.eu/projects/project-search/red-wolf-
rethink-electricity-distribution-without-load-following/
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Both algorithms are evaluated and compared in sec-
tion 4 considering two real-life scenarios (houses)
from France and UK, the conclusion follows in sec-
tion 5. Overall, the present paper di Lerk from our pre-
vious papers in several respects:

e first, an in-depth analysis and comparison be-
tween two approaches (rule-based vs. Linear
programming) aiming at reducing carbon emis-
sion in residential houses are carried out. To the
best of our knowledge, no study has ever con-
ducted such an analysis in the field of low green-
house gas emission houses.

* second, in order to allow for fair comparison be-
tween the two approaches, an extension of the
initial Olivieri’s model is proposed to integrate
PV systems;

e third, even if the prime objective is to reduce
CO,, an in-depth analysis and comparison analy-
sis of how the two models behave in terms of the
battery lifespan and computational time needed
to solve the problem are carried out.

2. Scope, Definition and Positioning

Section 2.1 gives the context of our contribution
focusing on the energy field. Section 2.2 discusses
how our research progresses the current state-of-the-
art.

2.1. Scope and Definition

The energy life cycle consists of several stages,
spanning from its generation and transmission to its
distribution and consumption (Saleem et al., 2019).
The present research falls within the scope of energy
management at the consumption stage, and more ex-
actly in residential nanogrids (Burmester et al., 2017).
Energy management in nanogrids usually consists of
four equipment categories, as depicted in Figure 1,
namely:
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e Electric Loads: referring to house equipment
that consume energy such as appliances, Electric
Vehicle (EV), HVAC equipment, efc.;

e Flexible & Shiftable Loads: referring to equip-
ment able to store energy for later use (incl., bat-
teries, storage heaters, water cylinders, or sta-
tionary electrical vehicles) or to shift consump-
tion from the peak of the utility provider’s de-
mand curve, when energy is most precious, to an-
other most appropriate time (e.g., by delaying the
start time of the washing machine or the charging
start time of the EV);

* Renewable energy sources: referring to energy
sources that can be regenerated and sustainably
utilized from nature including non-fossil energy
such as wind energy, solar energy, biomass en-
ergy, geothermal energy or kinetic ocean energy;

* Non-renewable energy sources: referring to en-
ergy sources that have finite supplies and can-
not be restored or regenerated in short periods of
time (incl., coal, natural gas, oil, nuclear energy).

Depending on the type of nanogrid architecture
(i.e., presence or not of renewable energy sources,
flexible loads, efc.) and the targeted objectives (e.g.,
reducing energy bills and/or GHGE and/or extending
device lifetimes, etc.), the Energy Management Sys-
tem (EMS) integrates di [Lerknt logics (Georgiou et al.,
2019), as reviewed and discussed in the next section.

2.2. Current state-of-aLalrs

This section presents an overview of the current
state-of-a [aits, along with the trends and gaps in the
literature. The methodology applied for reviewing the
literature is detailed in Figure 2. Sources such as doc-
toral dissertations, master’s theses, textbooks and un-
published papers were ignored. A first filter, denoted
by (1) in Figure 2, has been applied, consisting in se-
lecting articles based on the abstract content. This led
us to keep 202 articles. A second filter, denoted by
(2), has then been applied to keep papers dealing with
energy storage optimization (147 articles were identi-
fied). A final third filter denoted by (3), was applied to
keep only papers proposing approaches at the residen-
tial level only. This led us to review 43 articles, which
have been classified in Table 1 based on the following
criteria/categories:

e Lifecycle phase: highlights whether the proposed
approach deals with an optimization problem at
the Design (D) phase (e.g., for battery sizing)
or at the Operational (O) one (i.e., for deciding
when to consume/store/release energy);

e Optimization goal(s): highlights what objec-
tive(s) is/are targeted by the proposed approach,
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Figure 2: Literature review process

which are categorized as follows: (i) bill reduc-
tion; (ii)) GHGE reduction; (iii) peak shaving;
(iv) sustainability; (v) grid independency; (vi)
fuel reduction;

* Energy storage: highlights what storage systems
are considered/used, which are categorized as
follows: (i) BESS (battery energy storage sys-
tem) to (ii) hydro, (iii) Electric Vehicle (EV), (iv)
thermal or heating, and (v) fuel cell storage. This
category also emphasizes whether the approach
takes advantage of (vi) shiftable loads;

e Energy production: highlights what production
systems are considered/used, which are catego-
rized as follows: (i) fossil fuel, (ii) electrical grid;
(iii) PV array; (iv) wind turbine;

® Method: highlights the type of methods used for
optimization: (i) Heuristic (H); (ii) Metaheuris-
tic (MH); (iii) Mathematical Programming (MP);
(iv) Rule-Based (RB); (v) Multi-Criteria Deci-
sion Attribute (MCDA).

A first interesting finding from this review is that
there is a similar proportion of articles dealing with
optimization problems at the design (D) phase and at
the operational (O) one. In the former (D), articles
mainly focus on optimizing the hardware constituents
(battery size, installation cost, self-consumption ca-
pabilities, efc.) as well as the equipment configu-
ration to meet the various possible objectives (e.g.,
total cost of the installation, environmental impact,
self-consumption). The HOMER (Hybrid Optimiza-
tion Model for Electric Renewable) software, devel-
oped by the National Renewable Energy Laboratory
(NREL), appears in several of these articles such as
(Fodhil et al., 2019), as it allows for simulating and
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Table 1: Classification of the scientific articles reviewed throughout Section

Optimization Goals Storage/Shiftable Production
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Tooryan et al. (2020a) D I I | I I I W 1 1 1 1 MH
Tooryan et al. (2020b) D 1 I — - —1 1 1 MH
Das et al. (2020) D I | 1 1 1 1 1 MCDA
Yazan M. et al. (2019) D I I N | 1 MH
Awan et al. (2019) D 1 1 1 1 N I I | 1 1 MH
Ashraf et al. (2020) D 1 1 1 MH
Awan (2019) D I I | 1 1 1 1 CJ1H
Fodhil et al. (2019) D I I | 1 1 1 1 MH
Fonseca et al. (2021) D 1 1 1 1 I - 1 MP
Ayse Fidan and Muhsin (2020) D 1 1 [ MH
Bingham et al. (2019) D 1 1 1 1 1 MH
Salehi et al. (2019) D 11 1 [ 11 11 RB
Garcia-Vera et al. (2020) D 1 1 1 1 1 1 MH
Aziz et al. (2019) D 1 1 1 1 1 RB, H
Pandzi¢ (2018) D 1 1 1 MP
O’Shaughnessy et al. (2018) D 1 1 | I R H
Nguyen et al. (2014) D 1 1 MP
Borra and Debnath (2019) D 1 1 1 MH
Arévalo et al. (2020) D RB
Bhayo et al. (2020) D 1 1 1 MH
Haidar et al. (2018) (6] 1 1 1 —1 1 MP
Mahmud et al. (2018) (0] 1 1 1 I | RB
Liu et al. (2020) (0] I I | 1 1 1 1 RB
Nagapurkar and Smith (2019) O | I I | 1 1 N I I 1 1 MH
Olivieri and McConky (2020) (6] 1 1 1 1 MP
Schram et al. (2020) (6] 1 1 1 1 1 1 H
Stepaniuk et al. (2018) (6] 1 1 1 1 1 1 CRB
Terlouw et al. (2019a) (6] 1 1 1 1 1 1 MP
Terlouw et al. (2019b) (6] 1 1 1 11 1 | I R MP
Moradi et al. (2016) (0] I | 1 1 C 1 C 1 )1 Mmp
Nottrott et al. (2013) (6] 1 1 1 1 1 1 MP
Yadav et al. (2018) (6] 1 1 1 1 MP
Mulleriyawage and Shen (2020) (0] 1 1 1 1 1 1 MP
Litjens et al. (2018) (6] 1 I | 1 I | RB
Adefarati et al. (2019) (0] 1 1 1 1 1 1 MH
Aziz et al. (2019) (¢] 1 1 1 1 1 RB, H
Garcia-Trivifo et al. (2016) (e} —1 —1 1 1N 1 1 MH
Marzband et al. (2016) (0] 1 1 1 1 1 MH
Marzband et al. (2017) (6] 1 1 1 1 1 [ MP
Gonzalez-Briones et al. (2018) O 1 1 1 RB
Luo et al. (2020) (6] 1 1 N C10C 31 C 1 CJ1MH
Shukhobodskiy and Colantuono (0] 1 1 1 1 1 1 C1CJIRB
(2020); Ortiz et al. (2021)
Aufén-Hidalgo et al. (2021) (0] I - 1 1 I I I | RB
Georgiou et al. (2020a) O 1 1 1 1 I ) | MP
Georgiou et al. (2020b) (0] 1 1 1 1 1 1 MP,MH
Zhang et al. (2012) (0] | I I | 1 1 1 1 1 MCDA

| 39 27 2 18 20 5 | 3 38 2 2 5 6 | 18 28 31 14 |

analyzing di Lerknt types of renewable energy infras-
tructures. Although our article focuses on the oper-
ational phase (optimizing energy storage over time),
our review evidences that optimization also plays a
key role at the design phase.

Regarding the articles at the operational (O) phase,
most of the literature focuses on optimizing charg-
ing/discharging cycles of the energy storage systems
to shift the consumption from peak to o [=pkak hours.
As evidenced in Table 1, all the reviewed articles

202

203

204

205

206

207

208

adopt a multi-objective optimization model, aiming
at first — in  85% of the reviewed articles — reduc-
ing the electricity bill, second — 54% — at reducing
GHGE, third — 46% — at improving sustainability
aspects (e.g., extending the battery lifespan) and/or
grid interdependency, while peak shaving and fuel re-
duction have been considered infrequently in the re-
viewed papers. The reason for this is twofold: (i)
fuel reduction and peak shaving are often formulated
as overarching objectives when there is no connexion
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Figure 3: Overview of the RED WoLF’s hardware architecture,

to the electrical grid; and (ii) there are partly tackled
implicitly when addressing the GHGE reduction and
bill reduction problems (fuel reduction being mainly
linked to GHGE and peak shaving to financial costs)..
From an energy production and storage viewpoint, a
significant proportion of the reviewed articles — 65%
— consider a combination of electrical grid, PV and
BESS technologies, which can be explained by the
fact that it is often the most economical configuration,
as analyzed in (Murty and Kumar, 2020). Another in-
teresting point is that a couple of approaches propose
to combine di Lerknt types of storage such as BESS
and EV (Mahmud et al., 2018), BESS and hydrogen
storage (Bhayo et al., 2020), or still BESS and thermal
storage (e.g., water cylinder) (Terlouw et al., 2019b),
which provides additional flexibility for energy man-
agement. Looking at the optimization techniques used
for problem-solving, most of the approaches — in
73% of the reviewed articles — rely on optimization
solvers or heuristic algorithms, which require a cer-
tain amount of time to find optimal solutions, often
growing exponentially along with the increase of con-
straints and variables. This constitutes a serious im-
pediment for the development of Edge Computing so-
Iutions in the energy sector, as thoroughly discussed
by Feng et al. (2021).

Given the lack of approaches combining diler}
ent types of storage systems, and the fact that most
of them are computationally intensive, a new hy-
brid storage system for GHGE reduction in residential
houses/dwellings is being developed by the Interreg
NWE RED WoLF consortium, as originally presented
in (Shukhobodskiy and Colantuono, 2020). Section 3
recalls the infrastructure and logic underlying RED
WOLF, but also proposes an extension of the LP-
based algorithm introduced by Olivieri and McConky
(2020) with the aim to integrate PV into the model.

POWER FLOW
-=--+ CONTROL FLOW
-=--+ MONITORING FLOW

Appliances

along with the underlying power, data monitoring and control flows
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3. GHGE reduction systems

The hybrid-energy storage strategy proposed in
RED WOoLF is detailed in section 3.1. The extension
of Olivieri’s model is then presented in section 3.2.

3.1. RED WoLF optimization system

Figure 3 gives an overview of the hardware,
electrical and communication architecture un-
derlying the RED WOLF system introduced in
(Shukhobodskiy and Colantuono, 2020) and further
in (Ortiz et al., 2021), highlighting the power flow,
monitoring flow (i.e., monitored devices) and control
flow ( controllable devices from the algorithm).
As a first category of equipment, home appliances
comprise all devices that consume electrical power
and do not have any storage capability (e.g., TV,
oven, light, etc.). It should be highlighted that, as
of today, RED WOLF does not consider shiftable
loads as an additional flexibility resource. From an
energy supply perspective, RED WoLF considers
two electrical power sources to supply the home
appliances, namely (i) the national electrical grid,
which is a non-renewable energy source as it has
a carbon intensity, and (ii) a PV array, which is
a renewable (non-polluting) source. In terms of
flexible energy-storage devices, RED WoLF pro-
poses a hybrid-energy storage system, combining
electrochemical and thermal storage systems, as
illustrated in Figure 3 (BESS, water cylinder and
storage heaters). Finally, from a control viewpoint,
the RED WoLF algorithm is executed in a PLC (see
Figure 3), generating commands at di[lerbnt times
to either store or draw a certain amount of power
in/from the above described hybrid-energy storage
system.

Based on the hardware constituents, several data are
collected for use by the RED WoLF algorithm. These
data can be categorized in three classes:
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Table 2: Variables used in the RED WoLF optimization system

Class Variable  Units Description
Real-time Ay, kW Appliances present consumption
Real-time COz.yr gCO,/kWh  Grid present CO; load
Real-time PV, kW PV present production
Real-time By, kWh Battery state of charge
Real-time Cp, kWh Cylinder state of charge
Real-time Hp, kWh Storage heater state of charge
Predicted A, kW Appliances predicted consumption
Predicted PV kW PV predicted production
E Predicted  COjpre gCO,/kWh  Grid predicted CO; load
f@ Predicted Dgp kWh Appliances predicted consumption until the end of the day
<§ Predicted Gpy kW Grid predicted available mean drawable power
= Static Bce kWh Battery capacity
g Static Bimax kW Battery maximum admissible power
E Static Crmax kW Cylinder maximum admissible power
& Static Ciyer kWh Cylinder setpoint
é Static Dinax kW Grid power drawing limit (set by utility provider)
S Static Hinax kW Storage heater maximum admissible power
Static Hg,, kWh Storage heater setpoint
N/A Clem kW Cylinder present power demand
N/A Biem kW Battery present power demand
N/A Dinaxary kW Grid and PV power available for HSS
N/A Hgem kW Storage heater present power demand
N/A Prai kW Remaining power after supplying appliances and HSS
N/A COzpr gCO,/kWh  Control CO, threshold
N/A T; min Smallest time to supply HSS considering appliances
Real-time B, kW Power to be drawn from the battery
<>‘?§ Real-time By kW Power to be stored in the battery
e Real-time C,,, kW Power to be stored in the water cylinder
FS“ Real-time G, kW Power to be drawn from the grid
O Real-time Gy, kW Power to be injected to the grid
Real-time H,,, kW Power to be stored in the storage heater

i. Static parametervalues: referring to fixed param-
eters such as manufacturers’ data (e.g., maximum
battery capacity);

ii. Real-time data values: referring to live data mon-
itored at the hardware layer (e.g., data coming
from smart meters, sensors in the battery, ezc.);

iii. Predicted data values: referring to predicted data
such as predicted grid carbon intensities, pre-
dicted PV generation and house consumption.

Table 2 (column denoted by class) reports what sys-
tem variables belong to what class. It should be noted
that some system parameters are both predicted (us-
ing ML) and monitored in real-time (e.g., via sensors),
such as house appliance demand (respectively denoted
by A, and A.,), the output power produced by PV
(PVpres PVeur), or the grid carbon intensities (COxcyr,
CO»,re). Based on the input data, the RED WoLF al-
gorithm follows a two-step approach. First, a CO,
threshold applied on the (predicted) grid intensity sig-
nal is computed, which identifies when it is optimal to
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draw energy from the grid to meet — at minimum — the
house demand. Based on this threshold, a rule-based
strategy is applied to decide the charging/discharging
actions to be executed. These two steps are further
described in the following paragraphs.

To compute the CO, threshold, the average avail-
able electrical power to supply the thermal storage
system (Gpy), the energy required to reach the set-
point until the end of the day (Dgp), the heater and
cylinder power demands (Hg., and Cg.,) must be
computed, as respectively given from Eq. (1) to (4).

Gpy = Dipmax — Apre(®) dt— B (1)
PU Imax , (T — l) Imax
Ay BT
Dgp = 60 dt+ (ldem - l[ev) (2)
! i=H,C
Hgem = Hppax % HeaVi(Hset - Hlev) (3)
Cdem = CImax X HeaVi(Cset - Clev) (4)

Several system constraints and state variables are
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Figure 4: RED WoLF’s CO, threshold computation example

used in this respect, such as the maximum charging
power of the battery, cylinder and heater (respectively
denoted by Brmax, Himaxs Cimax), the maximum power
drawable from the grid (Djpqy), or still the current
level of charge of the heater and cylinder (Hj, and
Ciev). Note that the Heaviside step function (Heavi)
is defined as True (1) if the input is greater than 0,
False (0) otherwise.

The minimum time length (7) to charge equipment
is further computed from DD, Gpy, Hger, and Cep,
as given in Eq. (5).

O
= Clev Hgem — Hiev Dgp

T; = max , , — 5
! Clmux Hlmax GPU

The CO; threshold (CO5y,), which identifies the
best intervals for drawing electricity from the grid, is
then computed using Eq. (7), CO2presor referring to
the CO, prediction vector sorted in ascending order,
as given in Eq. (6).

COZpreSorr = Sort(COZpre) (6)

The ceil function used in Eq. (7) allows for getting
an integer value, which represents the drawing time
(in minutes) that is used as index in the sorted CO,
vector to determine the CO, threshold.

COZrhr = C02preSort (ml m (7)

Figure 4 illustrates the output when applying the
above equations. Assuming a 7 equals to 7h, the
threshold that meets this charging duration should
be identified. The first threshold example (denoted
by COj in Figure 4) does not meet this require-
ment, whlle the second threshold (CO ) does, re-
sulting in two “low CO, periods”: [8am; 10am] and
[2pm; 6pm]. Based on the computed threshold, a spe-
cific rule-based logic is applied, which is detailed in
the form of a flowchart in Figure 5 using the UML ac-
tivity diagram formalism. This flowchart shows that
two parts are run in parallel. On the first part (see
frame denoted by “CO, threshold computation” in
Figure 5), the steps refer to the reading of sensor data
needed to compute the CO; threshold (COzy,). Such
data is either locally accessed (e.g., state of charge
of the battery) or remotely (e.g., appliance consump-
tion forecasts or grid carbon intensity forecasts that

else

Section 3.2.2

4—‘4—.

t % tpred = 0

CO: threshold
GET COuzre, Awe | COMPUtation

( )

COMPUTE Gru
cf Eq. (1) READ Hiev Ciev
& J
COMPUTE
Hdem Cdem

cf. Eq. (3), (4)

COMPUTE Deo
cf Eq. (2)

COMPUTE Ti
cf. Eq. (5)

COMPUTE COzir
cf. Eq. (6), (7)

Action

GET COzeur, Acur, PVeur|  computation

002 < COun coz > COuur 1com > COur

a. PVo = Acur & PVou < Acur
suerlv
appliances
with PV

and grid

supply
appliances
with PV

supplv
appliances
with PV

J
else else
>0 [Acu > PV,

~N
supply

appliances

ith battery]

and grid

supply HSS
with PV

supply
appliances
with grid

Figure 5: Overall RED WoLF logic
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Table 3: Variables used in the Olivieri’s optimization system (Olivieri and McConky, 2020)

Class Var. Unit Description

Predicted d; kW Power required to supply appliances over the time interval i
z Predicted M; gCO,/kWh  Grid CO, load over the time interval i
(Sé Predicted pv; kW Power provided by PV over the time interval ;
‘5 Real-time Cap kWh BESS max capacity
Z N/A ppvi kW Power from PV used by appliances over the time interval i
g N/A bpv; kW Power from PV injected to BESS over the time interval i
‘QE) N/A gpvi kW Power from PV sent back to grid over the time interval i
5 N/A CO2; gCO, CO, emitted over the time interval i
- N/A SOC; kWh BESS state of charge read over the time interval i
= NA I hrs Length of each time interval
~ N/A T N/A Set of discrete time intervals

N/A inef % Ine Lciehcy factor (0 to 1)
= N/A pci kW Power charged in BESS over interval i
O NA pd; kW Power discharged from BESS over i

are computed at the Cloud level). On the second part
(see frame denoted by “Actions computation” in Fig-
ure 5), the steps refer to the decisions about the actions
to be executed in terms of energy storage and release
depending on the threshold value (COay,), namely:

1. if COzer < COgzyy, appliances and the hybrid-
energy storage system are powered by the grid
and PV array;

2. if COzeyr > COyy,y but PV is su Lcieht, appli-
ances are powered through PV and extra-power
(if any) is used to load the hybrid-energy storage
system;

3. if COzeyr > COyy, and PV is insu Lcieht, appli-
ances are powered through PV; if not su Lcieht,
through battery; if not yet su Lcieht, then through
the grid.

It should be noted that the RED WoLF algorithm
is inspired by the ARIMA (Autoregressive Integrated
Moving Average) model (Siami-Namini et al., 2018),
which in our case (considering the input data of our
problem) adds non-linearity and other levels of com-
plexity to the system. This is due to RED WoLF al-
gorithm takes as the input the prediction values and
current state of storage reservoirs, however the execu-
tion is done on current physical state of the system.

3.2. Olivieri’s optimization system

Olivieri’s optimization model considers the in-
frastructure detailed in Figure 6, the algorithm be-
ing run on a smart meter that controls the battery
(Olivieri and McConky, 2020). The model uses a LP
solver to reduce electricity bill, carbon emission, or
both simultaneously. For a fair comparison with RED
WoLF, only the model proposed for carbon emission
reduction is considered in this study. This model is
detailed through Eq. (8) to (17), which minimizes the se:

8

POWER FLOW

----+ GCONTROL FLOW

Figure 6: Olivieri’s hardware architecture

CO, emissions produced to meet the household’s en-
ergy demand during a time interval denoted by i.

—1
min Emissions = CO2; 8)
i[T1
subject to
CO2; = (d; + pe; = pd; = ppvi) - 1 - My, LT (9)
pc; =20, LI N (10)
pd; =0, LD (1D
(pci + bpv;) < Cap/2.7, LI T (12)
—1
SOC; = (pc; + bpv;y) - inef - I
=0
—1
- pd, - I, L1 (13)
=0
S0C; =0, I (14)
SOC; < Cap, i1 (15)
gpvi + ppvi + bpv; = pv;,Vi €T (16)
gpvi, ppvi, bpvi 20,VieT a7

CO, emissions are computed using Eq. 9, while






